Norming meshes by Bernstein-like inequalities
نویسنده
چکیده
We show that finite-dimensional univariate function spaces satisfying a Bernstein-like inequality admit norming meshes. In particular, we determine meshes with “optimal” cardinality for trigonometric polynomials on subintervals of the period. As an application we discuss the construction of optimal bivariate polynomial meshes by arc blending. 2000 AMS subject classification: 26D05, 42A05, 65T40.
منابع مشابه
On Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملOptimal polynomial admissible meshes on some classes of compact subsets of Rd
We show that any compact subset of Rd which is the closure of a bounded star-shaped Lipschitz domain Ω, such that {Ω has positive reach in the sense of Federer, admits an optimal AM (admissible mesh), that is a sequence of polynomial norming sets with optimal cardinality. This extends a recent result of A. Kroó on C 2 star-shaped domains. Moreover, we prove constructively the existence of an op...
متن کاملStability inequalities for Lebesgue constants via Markov-like inequalities
We prove that L∞-norming sets for finite-dimensional multivariate function spaces on compact sets are stable under small perturbations. This implies stability of interpolation operator norms (Lebesgue constants), in spaces of algebraic and trigonometric polynomials. 2010 AMS subject classification: 41A10, 41A63, 42A15, 65D05.
متن کاملOn generalizations of Gowers norms and their geometry
2 Structure of Norming hypergraph pairs 6 2.1 Two Hölder type inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Factorizable hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Semi-norming hypergraph pairs that are not norming . . . . . . . . . . . . . . . . . . . . 12 2.4 Some facts about Gowers norms . . . . . . . . . ....
متن کاملComputing optimal polynomial meshes on planar starlike domains
We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a uniform interior ball condition. Moreover, we provide an algorithm that computes such meshes on planar C convex domains by Blaschke’s rolling ball theorem. 2000 AMS subject classification: 41A10, 41A63, 65D05.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013