Norming meshes by Bernstein-like inequalities

نویسنده

  • M. Vianello
چکیده

We show that finite-dimensional univariate function spaces satisfying a Bernstein-like inequality admit norming meshes. In particular, we determine meshes with “optimal” cardinality for trigonometric polynomials on subintervals of the period. As an application we discuss the construction of optimal bivariate polynomial meshes by arc blending. 2000 AMS subject classification: 26D05, 42A05, 65T40.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

Optimal polynomial admissible meshes on some classes of compact subsets of Rd

We show that any compact subset of Rd which is the closure of a bounded star-shaped Lipschitz domain Ω, such that {Ω has positive reach in the sense of Federer, admits an optimal AM (admissible mesh), that is a sequence of polynomial norming sets with optimal cardinality. This extends a recent result of A. Kroó on C 2 star-shaped domains. Moreover, we prove constructively the existence of an op...

متن کامل

Stability inequalities for Lebesgue constants via Markov-like inequalities

We prove that L∞-norming sets for finite-dimensional multivariate function spaces on compact sets are stable under small perturbations. This implies stability of interpolation operator norms (Lebesgue constants), in spaces of algebraic and trigonometric polynomials. 2010 AMS subject classification: 41A10, 41A63, 42A15, 65D05.

متن کامل

On generalizations of Gowers norms and their geometry

2 Structure of Norming hypergraph pairs 6 2.1 Two Hölder type inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Factorizable hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Semi-norming hypergraph pairs that are not norming . . . . . . . . . . . . . . . . . . . . 12 2.4 Some facts about Gowers norms . . . . . . . . . ....

متن کامل

Computing optimal polynomial meshes on planar starlike domains

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a uniform interior ball condition. Moreover, we provide an algorithm that computes such meshes on planar C convex domains by Blaschke’s rolling ball theorem. 2000 AMS subject classification: 41A10, 41A63, 65D05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013